首頁|必讀|視頻|專訪|運(yùn)營(yíng)|制造|監(jiān)管|大數(shù)據(jù)|物聯(lián)網(wǎng)|量子|元宇宙|博客|特約記者
手機(jī)|互聯(lián)網(wǎng)|IT|5G|光通信|人工智能|云計(jì)算|芯片報(bào)告|智慧城市|移動(dòng)互聯(lián)網(wǎng)|會(huì)展
首頁 >> 大數(shù)據(jù) >> 正文

分貝通SAAS企業(yè)大數(shù)據(jù)體系建設(shè)經(jīng)驗(yàn)分享

2022年8月9日 15:24  CCTIME飛象網(wǎng)  

簡(jiǎn)介:本文將介紹分貝通在大數(shù)據(jù)領(lǐng)域的一些建設(shè)經(jīng)驗(yàn)。分貝通在ToB領(lǐng)域是一個(gè)年輕的公司,成立六年多,大數(shù)據(jù)體系剛剛建立一年多,整個(gè)團(tuán)隊(duì)不到二十人,整體的大數(shù)據(jù)建設(shè)處于初級(jí)和摸索的階段。本次將總結(jié)在大數(shù)據(jù)業(yè)務(wù)上的實(shí)踐和思考,希望給大家?guī)韱l(fā)。

分享嘉賓:吳榮彬 分貝通 大數(shù)據(jù)部負(fù)責(zé)人

導(dǎo)讀:本文將介紹分貝通在大數(shù)據(jù)領(lǐng)域的一些建設(shè)經(jīng)驗(yàn)。分貝通在ToB領(lǐng)域是一個(gè)年輕的公司,成立六年多,大數(shù)據(jù)體系剛剛建立一年多,整個(gè)團(tuán)隊(duì)不到二十人,整體的大數(shù)據(jù)建設(shè)處于初級(jí)和摸索的階段。本次將總結(jié)在大數(shù)據(jù)業(yè)務(wù)上的實(shí)踐和思考,希望給大家?guī)韱l(fā)。

主要內(nèi)容包括以下幾方面:

● 公司介紹

● 大數(shù)據(jù)建設(shè)背景

● 大數(shù)據(jù)建設(shè)方案

● 大數(shù)據(jù)應(yīng)用場(chǎng)景

公司介紹

先簡(jiǎn)單介紹一下分貝通。

我們平常公司中可能會(huì)遇到這種場(chǎng)景,比如出差時(shí)通過公司OA或郵件進(jìn)行審批,然后去訂機(jī)票、火車票、酒店等,到了目的地之后很多費(fèi)用還要自己墊付,回來再通過發(fā)票報(bào)銷,發(fā)票數(shù)量多且金額大,時(shí)間耗費(fèi)多;同時(shí)對(duì)公司而言,因?yàn)橐獙?duì)接很多外部平臺(tái),對(duì)企業(yè)和員工而言都是非常麻煩的。

分貝通致力于解決企業(yè)這方面的痛點(diǎn),除了差旅這部分大的支出,我們也希望在所有的支出管理場(chǎng)景提供整體解決方案,實(shí)現(xiàn)企業(yè)在預(yù)算、審批、交易、報(bào)銷的全流程閉環(huán)。對(duì)員工而言,所有支出都在一個(gè)平臺(tái),可以不用墊資和發(fā)票,使用非常便捷。對(duì)企業(yè)而言,可以做到事前預(yù)算管理,事中費(fèi)用控制,事后自動(dòng)報(bào)銷,極大的減輕了財(cái)務(wù)和行政的工作量。

前提是分貝通需要提前去對(duì)接不同的供應(yīng)商,比如酒店供應(yīng)商、用車供應(yīng)商等。在某些場(chǎng)景,分貝通還在建立自己的供應(yīng)商體系,包括自營(yíng)的酒店、自營(yíng)的商城。經(jīng)過六年多的發(fā)展,該模式得到了投資人和市場(chǎng)的認(rèn)可,現(xiàn)在服務(wù)于數(shù)千家客戶,業(yè)務(wù)增長(zhǎng)迅速,融資的規(guī)模也比較可觀,目前在企業(yè)服務(wù)領(lǐng)域算是獨(dú)角獸的存在。

大數(shù)據(jù)建設(shè)背景

我們公司的大數(shù)據(jù)部門去年才成立,之前整個(gè)公司數(shù)據(jù)底層建設(shè)比較匱乏,所有數(shù)據(jù)都是通過業(yè)務(wù)研發(fā)團(tuán)隊(duì)去支撐,業(yè)務(wù)研發(fā)除了很多自己的產(chǎn)品功能迭代以外,還要排期去做數(shù)據(jù)支持。整體體驗(yàn)較差,一個(gè)業(yè)務(wù)上線需要一到兩個(gè)月。這可能是所有ToB公司必經(jīng)的一個(gè)階段,ToB公司一開始的數(shù)據(jù)量可能不是特別大,不像ToC公司一開始就有自己的大數(shù)據(jù)團(tuán)隊(duì),隨著ToB公司的發(fā)展,數(shù)據(jù)量變大后,對(duì)大數(shù)據(jù)團(tuán)隊(duì)建設(shè)的需求是非常迫切的。

這是我們?nèi)ツ陿I(yè)務(wù)部門的需求,可以看到整個(gè)團(tuán)隊(duì)在底層數(shù)據(jù)方面的需求處于井噴的狀態(tài),未來可能有更多更細(xì)的需求。

對(duì)于一個(gè)ToB公司來說,基本上可以把客戶旅程分為六個(gè)階段:認(rèn)知、教育、選擇、支付、使用、增購。這是我們基于硅谷藍(lán)圖的SaaS獲客模型優(yōu)化后的劃分,對(duì)整個(gè)國(guó)內(nèi)ToB行業(yè)也有參考意義。認(rèn)知:當(dāng)我們想談一個(gè)客戶,首先要讓客戶了解分貝通。我們通過廣告或者電銷團(tuán)隊(duì)去做一個(gè)初步的接觸,這個(gè)叫做認(rèn)知。教育:當(dāng)有一定需求,客戶想起分貝通這個(gè)公司,會(huì)聯(lián)系你做深度的交流和拜訪,這時(shí)是深度教育的階段,讓客戶了解我們能夠解決他的什么問題。選擇:通過多家的對(duì)比選擇了分貝通。使用:交付使用。增購:發(fā)現(xiàn)有一些其他功能還不錯(cuò)增加購買,或者到了使用年限后繼續(xù)購買。

分貝通整體可以歸為三類部門,第一是業(yè)務(wù)部門,包括銷售、渠道、市場(chǎng)、客戶成功等;第二是運(yùn)產(chǎn)部門,即運(yùn)營(yíng)+產(chǎn)品的業(yè)務(wù)研發(fā)部門,包括商城、商旅、費(fèi)控、支付;第三是職能部門,包括產(chǎn)研、人力、財(cái)務(wù)。這三大部門對(duì)數(shù)據(jù)的需求不太一樣,對(duì)各個(gè)階段的需求也會(huì)有區(qū)別。

業(yè)務(wù)部門對(duì)數(shù)據(jù)的需求是非常強(qiáng)烈的。其中一個(gè)場(chǎng)景是客戶簽約,客戶購買了很多應(yīng)用場(chǎng)景的模塊,有些模塊用得很好,有些模塊用得很差,客戶成功團(tuán)隊(duì)希望知道哪些應(yīng)用場(chǎng)景重點(diǎn)在用,哪些開通了也不用,還有哪些用戶在流失等等,這些都是對(duì)數(shù)據(jù)的需求。

運(yùn)產(chǎn)部門對(duì)數(shù)據(jù)的核心要求在整個(gè)業(yè)務(wù)過程中存在卡點(diǎn),希望我們通過數(shù)據(jù)去告訴它。

對(duì)于職能部門,產(chǎn)研關(guān)心的是產(chǎn)品上線后是否有人在用,用的怎樣,是否能做ABtest。人力關(guān)心的是現(xiàn)在的員工關(guān)注的點(diǎn)是哪些,是薪酬還是福利。財(cái)務(wù)關(guān)注的是現(xiàn)在的財(cái)務(wù)報(bào)表,數(shù)據(jù)的準(zhǔn)確性如何,跟流水是否對(duì)得上,需要很明確的被告知,以上這些都是公司對(duì)數(shù)據(jù)的需求,各種各樣且非常強(qiáng)烈。

基于以上業(yè)務(wù)背景,我們需要選擇合適的技術(shù)來滿足業(yè)務(wù)的需求,從業(yè)務(wù)和技術(shù)兩個(gè)角度來考慮。首先,從業(yè)務(wù)方面考慮,當(dāng)時(shí)團(tuán)隊(duì)剛剛組建,人手比較匱乏,創(chuàng)業(yè)公司對(duì)人才的吸引力有限,因此我們的架構(gòu)的應(yīng)用成本要特別低,功能盡量簡(jiǎn)單,這樣才能更多地進(jìn)行業(yè)務(wù)思考和數(shù)據(jù)賦能。同時(shí),由于業(yè)務(wù)已經(jīng)發(fā)展到一定階段了,對(duì)數(shù)據(jù)的需求已經(jīng)比較迫切了,因此我們要快速的拿到結(jié)果。另外,從技術(shù)上考慮,原有技術(shù)數(shù)據(jù)已經(jīng)上云,因此我們必須選擇云端的解決方案,這樣有利于數(shù)據(jù)的傳輸。同時(shí),我們有很多的數(shù)據(jù)來源表,但是數(shù)據(jù)量還比較小,數(shù)據(jù)量在TB規(guī)模,對(duì)實(shí)時(shí)的要求沒有那么高。

在不考慮自建IDC的前提下,當(dāng)時(shí)擺在我們面前有三個(gè)選擇:第一個(gè)是比較成熟的云端的組建,阿里的MaxCompute+Hologres+實(shí)時(shí)計(jì)算Flink版+大數(shù)據(jù)開發(fā)治理平臺(tái)DataWork,第二個(gè)是云上開源的組建EMR,第三個(gè)是什么都不用,在云上自建Hadoop集群。這三個(gè)方案各有優(yōu)缺點(diǎn),第一個(gè)方案的好處是應(yīng)用成本嫁接給阿里云,但應(yīng)用成本較高。第二個(gè)方案是比較折中的方案,有一定的靈活性,但是在運(yùn)維上也需要一定的專業(yè)性。第三個(gè)方案需要招聘非常專業(yè)的應(yīng)用團(tuán)隊(duì)來組建自己的Hadoop集群,這在當(dāng)時(shí)來看不太可行。最后綜合來看,我們選擇了方案一。

大數(shù)據(jù)建設(shè)方案

技術(shù)架構(gòu)選型結(jié)束后,我們開始從內(nèi)部梳理大數(shù)據(jù)建設(shè)的整體體系,逐步進(jìn)行大數(shù)據(jù)建設(shè)。與大多數(shù)大數(shù)據(jù)體系架構(gòu)類似,底層是多源數(shù)據(jù)連接,往上做數(shù)據(jù)清洗,再往上進(jìn)行離線和實(shí)時(shí)的數(shù)據(jù)存儲(chǔ)與計(jì)算,到數(shù)據(jù)倉庫的建設(shè),再到上面的應(yīng)用層的建設(shè),左邊是組織流程規(guī)范的一些保障。

其中一些實(shí)踐方面的細(xì)節(jié)和總結(jié)值得分享。比如數(shù)據(jù)分析,對(duì)于ToB的公司來說是很大的一個(gè)模塊,這里的數(shù)據(jù)分析是指對(duì)外的數(shù)據(jù)分析,希望對(duì)現(xiàn)有的數(shù)據(jù)進(jìn)行深入的分析。在組織架構(gòu)上我們將數(shù)倉和數(shù)據(jù)分析分成兩個(gè)團(tuán)隊(duì),數(shù)倉團(tuán)隊(duì)負(fù)責(zé)整個(gè)ODS和DWD層的建設(shè),數(shù)據(jù)分析團(tuán)隊(duì)負(fù)責(zé)上層的DWS層和ADS層的建設(shè),這是橫向的切分。這樣做的好處是,數(shù)倉團(tuán)隊(duì)可以更好地關(guān)注底層數(shù)據(jù)的質(zhì)量,需要更多地跟研發(fā)打交道,數(shù)據(jù)分析團(tuán)隊(duì)只需要對(duì)數(shù)據(jù)分析負(fù)責(zé),而數(shù)據(jù)分析師可以更加關(guān)注整個(gè)數(shù)據(jù)的應(yīng)用和業(yè)務(wù)的應(yīng)用。這兩個(gè)團(tuán)隊(duì)有著完全不一樣的技能,而且可以互相監(jiān)督。除此之外,實(shí)時(shí)和離線不分開的好處是對(duì)于大家的技術(shù)發(fā)展而言,技術(shù)棧比較完整。

在流程和規(guī)范方面,我們當(dāng)時(shí)面臨的挑戰(zhàn)是內(nèi)部的業(yè)務(wù)線特別多,有十幾個(gè)業(yè)務(wù)線,不僅多,并且復(fù)雜,比如用車業(yè)務(wù)線,與滴滴的業(yè)務(wù)線相似。每個(gè)業(yè)務(wù)線的表很多,每個(gè)業(yè)務(wù)之間又是獨(dú)立開發(fā)的,規(guī)范需要統(tǒng)一,數(shù)據(jù)質(zhì)量也有很大差異,是非常棘手的問題。但是同時(shí)我們也有先發(fā)優(yōu)勢(shì)——從零開始建設(shè),所以我們當(dāng)時(shí)確定一個(gè)原則,一定要邊建設(shè)邊治理而不是先建設(shè)后治理。我們摸索出了一套從業(yè)務(wù)需求到開發(fā)到上線的標(biāo)準(zhǔn)的動(dòng)作,也就是所謂的SOP。比如將每周二、每周四作為固定的評(píng)審時(shí)間,評(píng)審的內(nèi)容都是按照自己的內(nèi)容自己的模板準(zhǔn)備好,每次評(píng)審都有記錄,上線的時(shí)候根據(jù)評(píng)審記錄來看它是否完成是否需要修改,保證流程規(guī)范治理好。

一件事情做到60分是很簡(jiǎn)單的,比如數(shù)倉的建立比較簡(jiǎn)單,但是要做到極致,真正做出一個(gè)好的數(shù)倉,90分的數(shù)倉其實(shí)是一件很難的事情。

有了對(duì)于大數(shù)據(jù)整體體系的流程與思路以后,落地就需要工具的支持,下面介紹一下數(shù)據(jù)建模的工具,F(xiàn)在我們用的是阿里云的DataWorks智能數(shù)據(jù)建模,我們?nèi)ツ甑讌⒓恿怂麄兊墓珳y(cè),今年開始正式使用。DataWorks智能數(shù)據(jù)建模最大的好處是,我們會(huì)把整個(gè)數(shù)倉的規(guī)劃和最終模型的產(chǎn)出做一個(gè)強(qiáng)關(guān)聯(lián),模型可以直接生成物理表,發(fā)布成功后也可以直接生成簡(jiǎn)單的ETL代碼。之前我們?cè)趹?yīng)用開發(fā)環(huán)境之前用SQL去建模,結(jié)果大家之間的標(biāo)準(zhǔn)不統(tǒng)一,就是一個(gè)人治的過程。有了DataWorks以后我們就變成了法治,通過工具實(shí)現(xiàn)了對(duì)整個(gè)數(shù)據(jù)的強(qiáng)治理,與原來相比,我們建模的便利性可能會(huì)差一些,比如想建一個(gè)數(shù)據(jù)匯總表,首先要建一個(gè)原始指標(biāo)才能建立派生指標(biāo),然后搭建表模型,再關(guān)聯(lián)數(shù)據(jù)標(biāo)準(zhǔn),這個(gè)流程相對(duì)而言會(huì)變長(zhǎng),剛開始的時(shí)候大家會(huì)不太習(xí)慣。雖然單個(gè)點(diǎn)的流程變長(zhǎng),但是整體效率提升了,數(shù)倉團(tuán)隊(duì)都非常接受這種規(guī)范。對(duì)數(shù)據(jù)倉庫的長(zhǎng)期建設(shè)而言,一些標(biāo)準(zhǔn)與規(guī)范的事前投入是非常有必要的,往往可以起到事半功倍的效果。

上圖是數(shù)倉整體架構(gòu)。在技術(shù)架構(gòu)方面,現(xiàn)在仍然是非常典型的一個(gè)lambda架構(gòu),離線與實(shí)時(shí)是分開的,結(jié)果在Hologres做了一層匯聚,有用到一些輔助的數(shù)據(jù)庫如MySQL和ES來存儲(chǔ)業(yè)務(wù)和標(biāo)簽的數(shù)據(jù)。這里有一些基于我們業(yè)務(wù)場(chǎng)景的使用建議,數(shù)據(jù)應(yīng)用鏈Hologres與MaxCompute有離線實(shí)時(shí)一體化的能力,Hologres存在兩種表存儲(chǔ)的方法,一個(gè)是數(shù)據(jù)不導(dǎo)出,直接加載MaxCompute表作為外表,一個(gè)是數(shù)據(jù)導(dǎo)入Hologres成為內(nèi)表。我們BI報(bào)表的業(yè)務(wù)場(chǎng)景是對(duì)外的,對(duì)我們來說是非常重要的,數(shù)據(jù)的穩(wěn)定性是需要首要保證的,所以我們更多地采用Hologres內(nèi)表方式去訪問ODS的數(shù)據(jù)而不是外表方式,這樣做的好處是一旦不小心將表的結(jié)果變更,如果是外表,BI工具只有在客戶訪問的時(shí)候才暴露出這種問題,但是采用內(nèi)表的方式在推數(shù)的時(shí)候就會(huì)發(fā)現(xiàn)問題,就可以避免線下穩(wěn)定性的問題。另外,我們每天都需要數(shù)據(jù)更新,我們不是每天都更新整個(gè)Hologres里面的表數(shù)據(jù),因?yàn)檫@樣效率會(huì)比較低,可能引起服務(wù)中斷。我們的方案是建立一個(gè)臨時(shí)的外表,生成臨時(shí)的內(nèi)表去替代線上表,這樣速度是非?斓,因?yàn)檎麄(gè)Hologres做了線路的優(yōu)化,效率非常高,直接去替代線上表,這樣對(duì)線上幾乎沒有影響。

再來介紹一下算法方面的經(jīng)驗(yàn)。先說一下Batch Mode的離線模型,我們目前使用的是阿里云的機(jī)器學(xué)習(xí)PAI來滿足日常的建模場(chǎng)景,這個(gè)圖是非常典型的數(shù)據(jù)流過程。首先樣本經(jīng)過實(shí)景化到ODS上面,在MaxCompute上進(jìn)行清洗和加工,最后也會(huì)實(shí)景化到一些表,在模型訓(xùn)練階段去開發(fā)、訓(xùn)練整個(gè)模型,訓(xùn)練完后有兩種選擇,一是不需要線上部署,只需要做一些離線的大表預(yù)測(cè),可以通過Designer去做一些數(shù)據(jù)的部署數(shù)據(jù)湖到整個(gè)ODS的table里。第二是如果想做模型的線上服務(wù),同樣可以把模型輸入到OSS層上面,通過EAS組件進(jìn)行服務(wù),這個(gè)是我們現(xiàn)在用的比較多的離線模型的數(shù)據(jù)流程。

接下來是實(shí)時(shí)模型的流程,比如推薦等模型場(chǎng)景,對(duì)模型的實(shí)時(shí)性要求比較高。有一些比較通用的組件,比如Flink、kafka等進(jìn)行數(shù)據(jù)的處理、特征的處理。模型的訓(xùn)練階段先做一個(gè)模型的轉(zhuǎn)化,離線的模型轉(zhuǎn)化成實(shí)時(shí)的模型,然后進(jìn)行訓(xùn)練評(píng)估,最后掛到線上去訓(xùn)練和替換,這里跟剛才的離線是不太一樣的。

ToB企業(yè)與ToC企業(yè)的技術(shù)選型區(qū)別

分貝通是典型的ToB企業(yè)。ToB和ToC企業(yè)存在一些差異,可以從三個(gè)方面來了解。首先是用戶群體,對(duì)于ToB來說,購買決策和使用性都是不一樣的,買一個(gè)軟件可能是財(cái)務(wù)的決策、KP的決策,但是員工在用。ToB企業(yè)的用戶粘性更高,一般按年簽約,公司已購買員工必須使用,同時(shí)對(duì)用戶有很強(qiáng)的專業(yè)性要求,針對(duì)不同的企業(yè)、角色,整個(gè)系統(tǒng)的設(shè)計(jì)是完全不同的,甚至相同行業(yè)相同崗位的需求也是完全不同的。ToC的采購決策者是個(gè)人,用戶不滿意可以放棄使用,粘性相對(duì)較低,用戶群體相對(duì)公眾化,用戶對(duì)軟件的需求有非常多的共性。

在應(yīng)用場(chǎng)景方面,ToB的場(chǎng)景非常豐富,我們做的只能解決客戶在生產(chǎn)過程當(dāng)中某一個(gè)環(huán)節(jié)的問題,無法覆蓋它所有方面的問題,因?yàn)閷I(yè)性太強(qiáng),一個(gè)問題的處理流程往往會(huì)很長(zhǎng),ToB在國(guó)內(nèi)還沒有千億美金的互聯(lián)網(wǎng)公司。ToC比較簡(jiǎn)單,滿足大家日常生活中的需求,例如吃、穿、住、行、玩,很容易在這一領(lǐng)域誕生千億美金的獨(dú)角獸互聯(lián)網(wǎng)公司,這決定了這兩個(gè)企業(yè)的企業(yè)規(guī)模。

在業(yè)務(wù)流程方面, ToB領(lǐng)域業(yè)務(wù)流程都很長(zhǎng),通常申請(qǐng)審批交易結(jié)算等等,一次交易涉及到很多環(huán)節(jié),但是ToC相對(duì)簡(jiǎn)單,例如網(wǎng)購下單僅需幾秒鐘,非常簡(jiǎn)單。

以上就是ToB和ToC企業(yè)的區(qū)別,也就決定了以下的技術(shù)特點(diǎn),ToB的數(shù)據(jù)量相對(duì)較小,在做數(shù)字化轉(zhuǎn)型的時(shí)候,包括我們自己,數(shù)據(jù)量還是TB級(jí)別,處于中小規(guī)模,但是業(yè)務(wù)相對(duì)復(fù)雜,對(duì)數(shù)倉的建模能力要求較高,需要了解業(yè)務(wù)后才能更好地去建模。整個(gè)作業(yè)的處理時(shí)間會(huì)比較短,我們現(xiàn)在的作業(yè)基本在分鐘級(jí)別,因此我們的容錯(cuò)恢復(fù)很快,對(duì)于技術(shù)框架的選型要求會(huì)低一些,選錯(cuò)了后面還有翻盤的機(jī)會(huì)。但對(duì)于ToC來說,基礎(chǔ)架構(gòu)完全不一樣,一旦選錯(cuò)了或版本需要升級(jí),代價(jià)會(huì)非常高昂,這是在做數(shù)倉這兩種模型的區(qū)別。

未來展望,可以分為兩個(gè)方面,一個(gè)是業(yè)務(wù)方面,希望可以識(shí)別公司更多的數(shù)字化轉(zhuǎn)型場(chǎng)景,我們希望通過產(chǎn)品化和平臺(tái)化更好地幫助公司去做業(yè)務(wù)化、智能化的事情;同時(shí)推進(jìn)業(yè)務(wù)的BP機(jī)制,推動(dòng)業(yè)務(wù)的緊密合作,數(shù)據(jù)中臺(tái)也要深入到業(yè)務(wù)中去,去了解業(yè)務(wù)內(nèi)在的東西而不是等著業(yè)務(wù)提需求;現(xiàn)在更多的是報(bào)表類的支撐,希望未來發(fā)展為報(bào)告、智能化產(chǎn)品的支撐;雖然分貝通是企業(yè)支付的場(chǎng)景,但更多的是差旅方面,差旅是很復(fù)雜的過程,比如說出一次差,要做很多的決策,我們希望探索更加智能的用戶體驗(yàn),降低決策成本。

在技術(shù)層面,隨著技術(shù)和數(shù)據(jù)的不斷積累,對(duì)實(shí)時(shí)的數(shù)據(jù)要求越來越高,我們?cè)趯?shí)時(shí)與HTAP這塊,會(huì)做一些深度的探索;現(xiàn)在的業(yè)務(wù)比較流行湖倉一體化,之前沒有這種需求,現(xiàn)在我們需要管理語音、文本等大量數(shù)據(jù),需要去解決非結(jié)構(gòu)化數(shù)據(jù)儲(chǔ)存和管理;第三是批流一體化,我們使用的是lambda架構(gòu),應(yīng)用比較精簡(jiǎn)但是存在開發(fā)和運(yùn)維上成本的重復(fù),我們希望在這些方面繼續(xù)探索來統(tǒng)一整個(gè)數(shù)倉,真正實(shí)現(xiàn)存儲(chǔ)和數(shù)倉統(tǒng)一的架構(gòu),減少額外的成本,這將是我們未來探索的幾個(gè)方向。

編 輯:T01
聲明:刊載本文目的在于傳播更多行業(yè)信息,本站只提供參考并不構(gòu)成任何投資及應(yīng)用建議。如網(wǎng)站內(nèi)容涉及作品版權(quán)和其它問題,請(qǐng)?jiān)?0日內(nèi)與本網(wǎng)聯(lián)系,我們將在第一時(shí)間刪除內(nèi)容。本站聯(lián)系電話為86-010-87765777,郵件后綴為#cctime.com,冒充本站員工以任何其他聯(lián)系方式,進(jìn)行的“內(nèi)容核實(shí)”、“商務(wù)聯(lián)系”等行為,均不能代表本站。本站擁有對(duì)此聲明的最終解釋權(quán)。
相關(guān)新聞              
 
人物
工信部張?jiān)泼鳎捍蟛糠謬?guó)家新劃分了中頻段6G頻譜資源
精彩專題
專題丨“汛”速出動(dòng) 共筑信息保障堤壩
2023MWC上海世界移動(dòng)通信大會(huì)
中國(guó)5G商用四周年
2023年中國(guó)國(guó)際信息通信展覽會(huì)
CCTIME推薦
關(guān)于我們 | 廣告報(bào)價(jià) | 聯(lián)系我們 | 隱私聲明 | 本站地圖
CCTIME飛象網(wǎng) CopyRight © 2007-2024 By CCTIME.COM
京ICP備08004280號(hào)-1  電信與信息服務(wù)業(yè)務(wù)經(jīng)營(yíng)許可證080234號(hào) 京公網(wǎng)安備110105000771號(hào)
公司名稱: 北京飛象互動(dòng)文化傳媒有限公司
未經(jīng)書面許可,禁止轉(zhuǎn)載、摘編、復(fù)制、鏡像